X-ray absorption spectroscopy

Paolo Fornasini

University of Trento Department of Physics

paolo.fornasini@unitn.it

http://alpha.science.unitn.it/~rx/raggi_x/fornasini/paolo_home.html

Attenuation mechanisms for X-rays

Basic X-ray techniques

Structural techniques

Summary

- X-rays absorption phenomenology
- X-rays absorption theory
- EXAFS: theoretical background
- EXAFS experiments
- EXAFS: data analysis, examples

X-rays absorption - phenomenology

The attenuation coefficient

Atomic cross sections – different contributions

Excitation and ionization

X-ray absorption

X-rays absorption edges

Atomic gases: edge fine structure

Atomic gases: smooth absorption coefficient

Atomic gases and condensed states

Molecular gases: Fine structure

Condensed systems: Fine structure

XAFS: Nomenclature

L edges .vs. K edge

L₂ and L₃ edges: Spin-orbit splitting

Spin-orbit splitting:

$$\Delta E_{SL} = \frac{|E_{n\ell}|Z^2 \alpha^2}{n\ell(\ell+1)} \simeq 5.32 \times 10^{-5} \frac{|E_{n\ell}|Z^2}{n\ell(\ell+1)}$$

$$\alpha = \frac{1}{4\pi\epsilon_0} \frac{e^2}{\hbar c} = \frac{1}{137}$$

$$\Delta E_{L_2 - L_3} \simeq 1.33 \times 10^{-5} |E_{n\ell}| Z^2$$

Ledges XAFS

Edge & XANES: all L edges

EXAFS: L_2 and L_1 edges EXAFS polluted by L_3 EXAFS L_3 EXAFS sufficiently extended only for heavy elements

Fine Structure: Molecules and Condensed systems

EXAFS: phenomenological mechanism

Lectures on XAFS

EXAFS

- introduction
- basic theory
- experiments
- data analysis

P. Fornasini

XANES

M. Benfatto C. Meneghini

Data analysis

C. Meneghini M. Merlini

Applications

XAFS in nanostructures & materials science F. Boscherini

SR & Matter in extreme conditions G. Aquilanti

SR & Environmental science P. Lattanzi

SR & Earth sciences *G*. Artioli

SR & Chemistry A. Martorana

SR & catalysts *C*.Lamberti

X-rays absorption - theory

Photon flux

Absorption coefficient

Paolo Fornasini Univ. Trento

 N_a = Avogadro number; m_{at} = atomic mass; M = molecular mass

http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html

Half-thickness

Table 2.1: Half-thickness (cm	n) for selected	substances at	selected X-ray	wavelengths.
-------------------------------	-----------------	---------------	----------------	--------------

$\hbar\omega~({\rm keV})$	Air	Mylar	Be	Al	Cu	Pb	
	0.0012	1.39	1.85	2.7	8.96	11.34	density (g/cm^3)
$5 \\ 20 \\ 50$	$\begin{array}{c} 14.05 \\ 727.33 \\ 2719.8 \end{array}$	$0.018 \\ 0.860 \\ 2.468$	$0.0085 \\ 1.6641 \\ 2.4105$	$0.001 \\ 0.075 \\ 0.697$	$0.0005 \\ 0.0023 \\ 0.0296$	8.3e-5 0.0007 0.0076	

Cross section and transition rates

Semi-classical approximation

Radiation-matter interaction

Fermi's Golden Rule

Coordinates representation

$$w_{fi} = \frac{\pi}{2\hbar} |\langle \Psi_f | H_I | \Psi_i \rangle|^2 \rho(E_f)$$

$$w_{fi} = \frac{\pi}{2\hbar} \left| \int \Psi_f(\vec{r}) H_I(\vec{r}) \Psi_i(\vec{r}) d\vec{r} \right|^2 \rho(E_f)$$

$$H_I(\vec{r}) = \frac{e}{m} \sum_f \vec{p}_j \cdot \vec{A}(\vec{r})$$

Transition rates and absorption coefficient

$$w_{fi} = \frac{\pi}{2\hbar} |\langle \Psi_f | H_I | \Psi_i \rangle|^2 \rho(E_f)$$

$$= \frac{\pi e^2 A_0^2}{2\hbar m^2} |\langle \Psi_f | \sum_{j} e^{i\vec{k}\cdot\vec{r}_j} \hat{\eta} \cdot \vec{p}_j | \Psi_i \rangle|^2 \rho(E_f)$$
Sum over electrons
$$\mu(\hbar\omega) = \frac{2\hbar}{\epsilon_0 \omega A_0^2 c} n \sum_{f} w_{fi}$$

$$= \frac{\pi e^2}{\epsilon_0 \omega m^2 c} n \sum_{f} |\langle \Psi_f | \sum_{j} e^{i\vec{k}\cdot\vec{r}_j} \hat{\eta} \cdot \vec{p}_j | \Psi_i \rangle|^2 \rho(E_f)$$
Sum over final states
Sum over electrons
$$E_f = E_i + \hbar\omega$$

A first summary

Final states

One-electron approximation

Electric dipole approximation

$$e^{i\vec{k}\cdot\vec{r}} = 1 + i\vec{k}\cdot\vec{r} - \dots \simeq 1$$

$$H_I \propto e^{i\vec{k}\cdot\vec{r}}\hat{\eta}\cdot\vec{p} \simeq \hat{\eta}\cdot\vec{p} = \omega^2 \hat{\eta}\cdot\vec{r}$$

$$\mu_{\rm el}(\omega) \propto \left| \left\langle \Psi_f^{N-1}\psi_f |\hat{\eta}\cdot\vec{r}| \psi_i\Psi_i^{N-1} \right\rangle \right|^2$$
Dipole selection rules:
$$\Delta I = \pm 1 \qquad \Delta s = 0$$

$$\Delta j = 0, \pm 1 \qquad \Delta m = 0, \pm 1$$

Sudden approximation

The final state

Atomic de-excitation

Paolo Fornasini Univ. Trento

 \mathcal{T}_h is shorter for higher atomic number Z

Core-hole lifetime and energy width

De-excitation mechanisms

Fluorescence yield

Paolo Fornasini Univ. Trento

Both fluorescence and Auger yields intensities are proportional to the absorption coefficient

Alternative measurements of XAFS

EXAFS: theoretical background

Absorption coefficient

Paolo Fornasini Univ. Trento

$$\mu(\hbar\omega) = \frac{2\hbar}{\epsilon_0 \omega A_0^2 c} n \sum_f w_{fi}$$

Time-dep. perturbation theory

$$W_{if} \propto \left| \left\langle \Psi_f \middle| \hat{H}_I \middle| \Psi_i \right\rangle \right|^2 \rho \left(E_f \right)$$

A: isolated atom

Photon \rightarrow photo-electron

Photo-electron parameters

Angular emission of photo-electron

Paolo Fornasini Univ. Trento

$$\beta = 2$$

Emission from s orbitals

$$N(\theta) \propto 3\cos^2 \theta = 3|\hat{\eta} \cdot \hat{r}|^2$$

B: non-isolated atom

 μ $h\nu = \hbar\omega$ photon energy $\mu(\omega) \propto \left| \left\langle \psi_f \left| \hat{\eta} \cdot \vec{r} \right| \psi_i \right\rangle \right|^2$ Outgoing + scattered core state electron

The EXAFS normalized signal $\chi(k)$

The absorption coefficient

Two-atomic system: $\delta \psi_f$

Two-atomic system: absorption coefficient

Normalized EXAFS function

EXAFS function in coordinate representation

EXAFS for a two-atomic system

Basic interference effect

Complex form
$$\chi(k) = 3 |\hat{\eta} \cdot \hat{R}|^2 \frac{1}{kR^2} \operatorname{Im} \left\{ f(k, \pi) e^{2i\delta_1} e^{2ikR} \right\}$$

 $f(k, \pi) e^{2i\delta} = |f(k, \pi)| e^{i\phi}$
Real form $\chi(k) = 3 |\hat{\eta} \cdot \hat{R}|^2 \frac{1}{kR^2} |f(k, \pi)| \sin\{2kR + \phi(k)\}$
 $R = 4 \text{ A}$
 $R = 2 \text{ A}$

Amplitudes and phase-shifts

Many-atomic systems

N atoms at the same distance

Coordination number

Polarisation effect

Coordination shells

Single and multiple scattering

Multiple scattering series

Sum over paths and over correlations

Multiple scattering series

$\mu(k) = \mu_0(k) \left\{ 1 + \sum \chi_2(k) + \sum \chi_3(k) + \sum \chi_4(k) + \dots \right\}$

Full Multiple Scattering

Intermediate Multiple Scattering

Single Scattering

Photo-electron wave-number k

Multiple scattering contributions

Intrinsic losses

Photo-electron mean-free-path

EXAFS and inelastic effects

Vibrational disorder

Vibrational disorder in crystals

Paolo Fornasini Univ. Trento

Simulated radial distributions for c-Ge

Separability of coordination shells ?

Structural disorder

Distributions of distances

Real and effective distributions

The inversion problem

Structural models and fitting procedure

The simplest model: gaussian approximation

Including weak asymmetry

EXAFS including asymmetry(one shell)

XAFS and other techniques

Paolo Fornasini Univ. Trento

XAFS = structural probe – Comparison with diffraction ?

Bragg scattering .vs. EXAFS

EXAFS: a structural probe

Main EXAFS applications

EXAFS experiments

XAFS: experimental layout

Sample conditioning:	Detection:	Alternative layouts:
cryostat oven reactor manipulators	transmission fluorescence electron yield 	 dispersive EXAFS refl-EXAFS

XAFS: experimental

Wigglers and bending magnets

Undulators

Paolo Fornasini Univ. Trento

Energy of n-th harmonic (one electron)

 $E_n(\theta) = \frac{2hc\gamma^2 n/\lambda_u}{1+K^2/2+\gamma^2\theta^2}.$

To obtain a continuous spectrum:

- 1. Angle-integrated flux
- 2. Large horizontal e-beam size

(high-beta sections)

- 3. Modify K by modifying the gap
 - 3a Vertical shift of magnet arrays
 - 3b Tapered undulators

Collimated intense beams, useful for:

- small samples (e.g. pressure measurements)
- fast measurements

XAFS: experimental

Monochromators and mirrors

X-ray crystal monochromators

Paolo Fornasini Univ. Trento

	20
)	6.2708

S()	6.2708
Si (220)	3.84
Si (311)	3.28
Si (331)	2.5
Si (511)	2.08
Ge (111) Ge (220)	6.5328 4.0004

0. / 4 4 4

- Forbidden 'reflections'
- Harmonics
- Spurious reflections

Crystal reflectivity

Higher order reflections have narrower rocking curves.

Energy resolution

Two-independent-crystals monochromators

Independent crystals detuning

X-ray mirrors – harmonics rejection

X-ray mirrors – beam focalisation

XAFS: experimental

Detection schemes

XAFS: direct transmission measurements

Direct transmission measurements

Indirect detection methods

XAFS: fluorescence detection (FLY)

$$I_{f} = I_{0}(\omega) \eta_{f} \frac{\Omega}{4\pi} \frac{\mu_{a}(\omega)}{\mu_{tot}(\omega) + \mu_{tot}(\omega_{f})} \left\{ 1 - \exp(A) \right\} \qquad A = -\sqrt{2} z \left[\mu_{tot}(\omega) + \mu_{tot}(\omega_{f}) \right]$$

Fluorescence: thin samples

$$I_{f} = I_{0}(\omega) \eta_{f} \frac{\Omega}{4\pi} \frac{\mu_{a}(\omega)}{\mu_{tot}(\omega) + \mu_{tot}(\omega_{f})} \{1 - \exp(A)\}$$

$$A = -\sqrt{2} z \left[\mu_{s}(\omega) + \mu_{s}(\omega_{f})\right]$$

$$A = -\sqrt{2} z \left[\mu_{s}(\omega) + \mu_{s}(\omega_{f})\right]$$

$$1 - \exp(A) \approx 1 - 1 - A = -A$$

$$I_{f} \propto \mu_{a}(\omega)$$

Fluorescence: thick samples

$$I_{f} = I_{0}(\omega) \eta_{f} \frac{\Omega}{4\pi} \frac{\mu_{a}(\omega)}{\mu_{tot}(\omega) + \mu_{tot}(\omega_{f})} \{1 - \exp(A)\}$$

$$A = -\sqrt{2} z \left[\mu_{s}(\omega) + \mu_{s}(\omega_{f})\right]$$

$$I - \exp(A) \approx 1$$

$$I - \exp(A) \approx 1$$

$$I_{f} = I_{0}(\omega) \eta_{f} \frac{\Omega}{4\pi} \frac{\mu_{a}(\omega)}{\mu_{tot}(\omega) + \mu_{tot}(\omega_{f})}$$

$$I_{f} = I_{0}(\omega) \eta_{f} \frac{\Omega}{4\pi} \frac{\mu_{a}(\omega)}{\mu_{tot}(\omega) + \mu_{tot}(\omega_{f})}$$

$$\|a^{"} \text{ concentrated}$$

$$\mu_{a}(\omega) \approx \mu_{tot}(\omega) \text{ no XAFS}$$

$$\mu_{tot}(\omega) >> \mu_{tot}(\omega_{f}) \text{ NO}$$

$$\|a^{"} \text{ concentrated}$$

$$\mu_{a}(\omega) << \mu_{tot}(\omega)$$

$$I_{f} \propto \mu_{a}(\omega)$$

$$(\omega) < K + \frac{1}{2} +$$

Fluorescence detection

Paolo Fornasini Univ. Trento

To reduce background :

A) Detection at 90° minimises scattering (less effective for large solid angles)

B) Detection schemes

- 1. Filter + slits systems
- 2. Multi-element solid state detectors (energy dispersive)
- 3. Crystal analysers

XAFS: electron detection (a)

Indirect processes and escape depth

XAFS: electron detection (b)

Dispersive XAFS (a)

$$2d \sin\theta = \lambda$$

Dispersive XAFS (b)

③ No mechanical movements (no dead times)

- Simultaneous acquisition of all data points
- ③ Acquisition time determined by acceptable statistics

OK for time-resolved measurements

- Oritical in terms of temporal and spatial beam stability and sample presentation
- ⁽²⁾ Only trasmission mode
- 8 X-ray beam not perfectly focussed through the sample
- ⁽²⁾ No reference measurements during acquisition

NO accurate quantitative results

EXAFS: data analysis, examples

Paolo Fornasini Univ. Trento

List of available software:

http://www.esrf.eu/Instrumentation/software/data-analysis/Links/xafs

FEFF project (University of Washington, USA): http://leonardo.phys.washington.edu/feff/

IFEFFIT (University of Chicago, USA) + Athena, Artemis, Demeter http://cars9.uchicago.edu/ifeffit/.

GNXAS project (University of Camerino, Italy):

http://gnxas.unicam.it/XASLABwww/pag_gnxas.html

EXAFS data analysis

Extraction of EXAFS signal

Total absorption coefficient

Edge absorption coefficient

Photoelectron wavenumber

Atomic absorption coefficient

Best-fitting polynomial spline

Fit optimization

Quantitative analysis of EXAFS

Input for each path:

- backscattering amplitude
- phaseshifts
- inelastic terms

Different analysis procedures

EXAFS data analysis

▲ Fourier transform

Data analysis - Fourier Transform $k \rightarrow r$

Fourier Transform and distribution

bcc structure (26-Fe)

fcc structure (29-Cu)

29 - Copper: fcc structure – Multiple Scattering

Paolo Fornasini Univ. Trento

Rehr & Albers, Rev. Mod. Phys. 72, 621(2000)

Diamond structure (32-Ge)

Crystalline and amorphous Ge – EXAFS signals

Crystalline and amorphous Ge: F.T.

- Structural disorder
- stronger for outer shells

- Only 1st shell
- Thermal disorder
- Structural disorder

EXAFS data analysis

▲ First shell analysis

1st-shell Fourier back-transform

1st-shell distribution of distances

Real and effective distributions

EXAFS for first shell, including asymmetry

Non-linear fitting method

EXAFS data analysis

▲ 1st shell phase and amplitude analysis

Separate evaluation of phase and amplitude

"Ratio method" - phases

Paolo Fornasini Univ. Trento

If suitable model compound available ...

$$\Phi^{s} - \Phi^{m} = 2k \left(C_{1}^{s} - C_{1}^{m} \right) - \frac{4}{3} k^{3} \left(C_{3}^{s} - C_{3}^{m} \right)$$

$$\frac{\Phi^s - \Phi^m}{2k} = \left(C_1^s - C_1^m\right) - \frac{4}{3}k^2\left(C_3^s - C_3^m\right)$$

"Ratio method" – amplitudes – 2 cumulant

Paolo Fornasini Univ. Trento

If suitable model compound available ...

$$s = sample$$

 $m = model$

$$\ln \frac{A^{s}}{A^{m}} \cong \ln \frac{N^{s}}{N^{m}} - 2k^{2} \left(\sigma_{s}^{2} - \sigma_{m}^{2}\right)$$

intercept Slope

"Ratio method" - results

"Ratio method" - OK when ...

- Only Single Scattering
- Only one distance
- Suitable reference model available

$$\chi(k) = A(k)\sin\Phi(k)$$

First coordination shell, one distance
 Same sample-model environment

 T or p-dep. Studies
 Amorphous .vs. crystalline samples

- 1st shell, different sample-model environment
- Separated outer shells, weak M.S.

- 1st shell in bcc structure (2 distances)
 - Superposed outer shells
 - M.S. contributions

Depending on sought accuracy
EXAFS data analysis

▲ Outer shells analysis

Analysis - Outer shells back-transform $r \rightarrow k$

Analysis - non-linear fitting of outer shells

Analysis - Maximum available information

Analysis - Accuracy evaluation

Quantitative uncertainty from experiment

Repeated measurements	 Same run, different data files Different beamlines, different times Different edges (signal contamination ?) 	Indep. data Gaussian distr.?
Quality of data	Ratio method, highly sensitive	
Data analysis	 Background subtraction FT windows Fitting intervals 	Non-indep. data Uniform distr.?
Definition of phys. quantities	 Average .vs. crystallographic distance Debye temperature 	
Systematic errors	??	J. Synchr. Rad. 26, 603 (2013)

EXAFS data analysis

Examples and interpretation of results

(comparison EXAFS-XRD)

Diffraction .vs. EXAFS

Random solid solutions (a)

Random solid solutions (b)

Random solid solutions (c)

Mikkelsen & Boyce, 1983

Effects of thermal vibrations in crystals

Bond distances in crystals

EXAFS Debye-Waller factor

Debye-Waller factor – Debye model

Debye-Waller factor – Einstein model

The end

Basic bibliography

- G.S. Brown and S. Doniach: *The principles of X-ray Absorption Spectroscopy*, in *Synchrotron Radiation research*, ed. by E. Winick and S. Doniach, Plenum (New York, 1980) [A general introduction to X-Ray absorption]
- P.A. Lee, P.H. Citrin, P. Eisenberger, and B.M. Kincaid, Rev. Mod. Phys. 53, 769 (1981) [Review paper on EXAFS]
- T.M. Hayes and J. B. Boyce, Solid State Physics 27, 173 (1982) [Review paper on EXAFS]
- B.K. Teo: *EXAFS, basic principles and data analysis*, Springer (Berlin, 1986) [Introductory book on EXAFS]
- D.C. Koningsberger and R. Prins eds.: X-ray Absorption: principles and application techniques of EXAFS, SEXAFS and XANES, J. Wiley (New York, 1988) [Introductory book on XAFS]
- M. Benfatto, C.R. Natoli, and A. Filipponi, Phys. Rev. B 40, 926 (1989) [Paper on multiple scattering calculations]
- J. Stöhr: *NEXAFS spectroscopy*, Springer (Berlin, 1996) [Book on XANES]
- J.J. Rehr and R.C. Albers, Rev. Mod. Phys. 72, 621 (2000) [Review paper on EXAFS]
- P. Fornasini, J. Phys.: Condens. Matter 13, 7859 (2001) [EXAFS and lattice dynamics]
- G. Bunker: Introduction to XAFS, Cambridge U.P. (2010) [Introductory book on XAFS]
- S. Kalvin: *EXAFS for everyone*, CRC Press (2013) [Handbook for experimentalists]
- J.A.van Bokhoven and C. Lamberti eds.: *X-ray absorption and X-ray emission spectroscopy: theory and applications*, Wiley (2016)

XAFS Society home page: http://www.ixasportal.net/ixas/